Numerical analysis of the effect of microstructures of particle-reinforced metallic materials on the crack growth and fracture resistance

نویسندگان

  • L. MISHNAEVSKY
  • S. SCHMAUDER
چکیده

This paper presents a systematical computational study of the effect of microstructures of materials reinforced with brittle hard particles on their fracture behavior and toughness. Crack growth in particle-reinforced materials (here, in high speed steels) with various artificially designed arrangements of brittle inclusions is simulated using microstructure-based finite element meshes and an element elimination method. The following types of brittle inclusions arrangements are considered: (simple microstructures) net-like continuous, band-like, random with different inclusion sizes, and (complex microstructures) layered and clustered arrangements, with different inclusion sizes and orientations. Crack paths, force-displacement curves, fracture toughness and fractal dimension of fracture surfaces are determined numerically for each microstructure of the materials. It is demonstrated that extensive crack deviations from the initial cracking directions and an increase in the fracture toughness can most efficiently be achieved by using complex microstructures, such as alternated layers of fine and coarse inclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Crack Resistance in Single Walled Carbon Nanotube Reinforced Polymer Composites Based on FEM

Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal and electrical properties. The applications of CNT, especially in composite materials, i.e. carbon nanotube reinforced polymer have received great attention and interest in recent years. To characterize the influence of CNT on the stress intensity factor of nanocomposites, three fracture ...

متن کامل

NUMERICAL ANALYSIS OF THE INFLUENCE OF STOPPING HOLES IN THE CRACK GROWTH

The fracture and crack growth of mechanical structures is a usual phenomenon which is due to the application of tensile, cyclic loading or thermal stresses on the structure. So introducing of methods to prevent the crack growth is useful. Afterward, one of the repairing methods of crack growth, consisting to make a hole in the crack tip to elimi-nate the sharp corners, was explained. This metho...

متن کامل

Thermal Stress Resistance to Fracture and its Relation to with Resistance to Thermal Fatigue and Shock

Dense Silicon nitride was investigated to determine the effect of its microstructural parameters and densification on thermo-mechanical properties and thermal stress resistance to fracture initiation during a hot or cold mechanical and thermal shock testing. The different materials and microstructures were obtained by changing the parameters such as the type of the powder, additive, forming p...

متن کامل

Thermal Stress Resistance to Fracture and its Relation to with Resistance to Thermal Fatigue and Shock

Dense Silicon nitride was investigated to determine the effect of its microstructural parameters and densification on thermo-mechanical properties and thermal stress resistance to fracture initiation during a hot or cold mechanical and thermal shock testing. The different materials and microstructures were obtained by changing the parameters such as the type of the powder, additive, forming p...

متن کامل

Computational modeling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials

A computational approach to the optimization of service properties of two-phase materials (in this case, fracture resistance of tool steels) by varying their microstructure is developed. The main points of the optimization of steels are as follows: (1) numerical simulation of crack initiation and growth in real microstructures of materials with the use of the multiphase finite elements (MPFE) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004